
Introduction to System Strategies 1
ID: 883-BSI | Version: 9 | Date: 5/16/08 2:39:02 PM

Introduction to System Strategies
Bob Ellison, CERT, Software Engineering Institute [vita1]

Carol Woody, CERT, Software Engineering Institute [vita2]

Copyright © 2007 Carnegie Mellon University

2007-05-17

Trustworthiness can no longer be predicted by building software systems from discrete, isolated pieces that
address static requirements within planned cost and schedule. Each new or updated component joins an
existing operational environment and must merge with that legacy to form an operational whole. Today’s
technology must support an operating environment that is driven by business goals and organizational needs
instead of a predefined infrastructure that functions within established technology constraints. The operating
environment can be geographically and managerially distributed and dynamically changing. Few businesses
can stop to make changes and then restart. This introduction discusses the effects of the changing operational
environment on the development of secure systems.

Trends Affecting System Security
The expanding scope, complexity, and scale of current and planned systems influence the ways in which we
must address security and drive a need to reassess the development assumptions that we successfully applied
in the past. A number of trends will influence how we need to address security.

• Instead of centralized control, which was the norm for large stand-alone systems, developers will have
to consider multiple and often independent control points for systems of systems.

• Increased integration among systems has reduced the capability to make wide-scale changes quickly.
In addition, for independently managed systems, upgrades are not necessarily synchronized. Services
shared by multiple systems have been introduced to reduce redundancy and improve interface
manageability. However, we need to maintain operational capabilities with appropriate security as those
services are upgraded or retired and as new services are added.

• With the increased integration among independently developed and operated systems, we will have
a heterogeneous collection of components, multiple implementations of common interfaces, and
inconsistencies among security policies as systems and organizational policies adjust over time to
changing organizational needs.

• System development increasingly has to consider how users and operators contribute to the overall

behavior of the system. We no longer have a distinct boundary between people and systems [SEI 063].

• With the erosion of the people/system boundary and the mismatches and errors introduced by
independently developed and managed systems, failure in some form will be more the norm than
the exception, further complicating the creation and validation of security requirements for effective
software and system design.

Some of these issues were raised by The Committee on Information Systems Trustworthiness that was
convened by the Computer Science and Telecommunications Board (CSTB) of the National Research
Council (NRC) to assess the nature of information systems trustworthiness and the prospects for technology

that would increase it. Their report was issued as the document Trust in Cyberspace [Schneider 994]. Their
report is an excellent summary of the issues and the research required to address them.

System-level trustworthiness requirements are typically first characterized informally. The
transformation of these informal notions into precise requirements that can be imposed on individual
system components is difficult and often beyond the current state of the art. Whereas a large software

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/208-BSI.html (Ellison, Robert J.)
2. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/887-BSI.html (Woody, Carol)
4. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_schneider99 (System

Strategies References)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/208-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/887-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_sei06
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_schneider99

Introduction to System Strategies 2
ID: 883-BSI | Version: 9 | Date: 5/16/08 2:39:02 PM

system such as an NIS [networked information system] cannot be developed defect-free, it is possible
to improve the trustworthiness of such a system by anticipating and targeting vulnerabilities. But to
determine, analyze, and, most importantly, prioritize these vulnerabilities, a good understanding is
required for how subsystems interact with each other and with the other elements of the larger system
—obtaining such an understanding is not possible today.

NISs pose new challenges for integration because of their distributed nature and the uncontrollability
of most large networks. Thus, testing subsets of a system cannot adequately establish confidence in
an entire NIS, especially when some of the subsystems are uncontrollable or unobservable as is likely
in an NIS that has evolved to encompass legacy software. In addition, NISs are generally developed
and deployed incrementally. Techniques to compose subsystems in ways that contribute directly to
trustworthiness are, therefore, needed.

Limitations of Current Techniques
Both the technologies used and dynamic nature of the operational environment raise software risks that are
typically not addressed in current practice. Current security verification approaches are primarily point-in-
time strategies focused on selected pieces that are not easily adapted to the dynamics that software now has
to address. Product component accreditation is focused on a point in time and a specific instantiation of a
product, which is only useful for an implementation that closely matches the one used in the accreditation
effort. With the range of usage available and the frequency of upgrades for most products, the likelihood of
a match is minimal. System certification assumes a “hard” system boundary under the control of a single
management point and validates that the security controls within this boundary are functioning as planned,
which ignores all of the system-of-systems interoperability and management issues. Vulnerability analysis
evaluates an operationally ready network, system, or software set against previously identified and analyzed
defects and failures at a given point in time for a specified configuration. Such techniques are of limited
value when the system can be dynamically configured to meet changing operational and business needs.
Additionally, for software under development, the operational context is typically not sufficiently detailed to
apply any of these current techniques until system integration testing, very late in the development cycle.

Individual software components and systems operating within a system-of-systems environment cannot be
evaluated for security effectiveness without considering the operational and organizational environments
within which each must function. Security responsibility is distributed across the people, practices, policies,
and technology. Few techniques look beyond the technology, and this organizational context is a key driver
for security risk. Demonstrating regulatory compliance for Sarbanes-Oxley, HIPAA, or FISMA, which
addresses only a portion of software security risk, requires effectiveness of organization controls as well as
of software implemented controls. Effective security requires a careful balance among the following four
areas:

• organizational management policies and procedures

• user management and practices, which includes authorization and authentication

• software development and acquisition, which includes built-in security capabilities and software
reliability

• operational security practices and management

Sources of Complexity
One objective for this article is to discuss the affects of the business demands on security and suggest some
strategies that may help in managing the complexity. Some of those strategies represent work in progress by
organizations now confronting these problems and were synthesized from presentations and discussions at
various conferences.

The oft-repeated adage is that complexity is the enemy of security, but complexity in modern systems is a
given, and we have to manage it rather than unnecessarily adding to it. The complexity is an aggregate of
technology, scale, scope, operational, and organizational issues.

Introduction to System Strategies 3
ID: 883-BSI | Version: 9 | Date: 5/16/08 2:39:02 PM

Business Drivers
The quotation from the CSTB report included in the introduction for this article captures the technical
challenges as the security context expands from components, to systems, and then to systems of systems. The
technology concerns are only part of the problem. The development and operation of large software systems
require balancing a spectrum of forces. The technical forces, for example, are reflected in the difficulty of
implementing a particular function or with meeting the quality measures for reliability, performance, and
security. The organizational forces include regulations such as Sarbanes-Oxley and HIPAA, integration of
financial, administrative, and manufacturing control systems, effects of distributed operations, rapid pace
of business change, increased business expectations for recovery with less tolerance for mistakes, expanded
and more permeable system perimeter to meet business needs, and continued pressure to reduce IT costs.
These business forces are transformed into technical factors. Regulations increase the business expectations
for privacy and information protection that must be reflected in the fielded system (or system of systems).
The expanded system perimeter increases the risks associated with vendors, suppliers, business partners, and
customers. The integration of financial, administrative, and manufacturing control systems typically requires
interoperability across multiple computing platforms with differing risk profiles and implementations of
security policies. The pace of business change generates requirements for distributed management and
system flexibility and ease of evolution, and operations increase the need for global identity management,
strong access control, and accountability. Non-stop operations require that some significant changes can be
made without shutting down the systems.

Security of Interoperating Systems
The perception is that technology is an enabler for organizational expansion but the costs are not understood.
We have had rapid expansion of mobile computing as well as increased integration among business systems.
Technologies such as web services should enable a more rapid deployment of distributed systems. Each
segment is constructed and validated independently allowing for easier and faster deployment, but this can
lead to operational complexity in terms of the difficulty of managing the systems that were built separately
but must interoperate at execution. We can deploy but the systems are increasingly likely to have hidden
risks, especially in problem identification and correction, that do not appear until the systems are actively
in use. Complex functions and interactions make it impossible to identify and validate every possible
combination before implementation.

Stakeholder Diversity
Stakeholders who define the business needs for a new application or component can represent a highly
complex range of organizational needs; they can be organizationally distributed and diverse, with conflicting,
complex, and incomplete requirements. As more organizational functions are linked to share information,
the technology that supports those functions is integrated to share data and support cross-functional
activities. When the choices made by previously disconnected stakeholders are incompatible, poorly planned
integration can leave gaps that provide opportunities for security problems.

Balancing Current and Future Needs
There is a growing emphasis on reuse of existing software and components in ways not planned for by
the original designers, and this trend is expected to increase as technology becomes more pervasive.
Inconsistencies between designed and future use provide further opportunities for security problems.

Requirements
The business requirements are often poorly defined for functionality as well as security. The multiplicity
of factors generates diverse requirements and frequently leads to inherently conflicting ones. There may be
requirements that are unknowable, such as when we do not fully understand the liability associated with
new business activities. As system connectivity moves beyond the organizational boundaries, we have
less knowledge of the external dependencies that exist. We often have to refine the requirements during
development to reflect the knowledge gained. If non-functional requirements such as security are not
specifically reviewed at critical junctions within the development life cycle, the opportunities for security
problems from missing or incomplete requirements is extremely high.

Introduction to System Strategies 4
ID: 883-BSI | Version: 9 | Date: 5/16/08 2:39:02 PM

Concurrent Evolution of Business Practices and Systems
One of the most significant characteristics of the business factors is that they can be very fluid as businesses
respond to market changes and growing regulatory demands. New usage can generate new liabilities or
raise the level of software assurance that must be demonstrated. The volatility of the business requirements
compounds the costs and schedule slippages associated with the development of large business systems.
The tradeoff decisions must accommodate the variability driven by distributed management and business
change. Software is always touted for its flexibility in terms of meeting requirements, but that flexibility is
fully available only at the start of development. Design choices to meet specific requirements can constrain
other options and limit the ability to make changes after the system is deployed.

Operations
There is a highly visible disconnect between the organizational visions of technology security and the
realities of the implementations. One author describes the situation as “building a house so fragile that
knocking on the door causes it to fall down—and then arresting the visitor who had the impertinence

to knock” [Smith 055]. For example, students at a Pennsylvania high school who bypassed web access
restrictions built into an application were charged with criminal trespass for using administrative passwords

taped to the bottom of their loaner laptops [Kantor 056]. In another example, PharmaCare, a health insurer
for Harvard University, provided access to pharmaceutical records based on birth date and student ID, which

are public data [Russell 057].

Operations are increasingly non-stop. Changes cannot require system restarts and have to be made in minutes
or hours and not weeks to respond to an operational condition. Diversity is a given. A small business may
need to adapt its system to work with multiple large customers. A large organization may need to support
outsourcing of services as well as joint business activities. The continuing evolution of usage and technology
can rapidly age an application’s architecture by invalidating design assumptions. Grady Booch, a co-founder
of Rational Systems and now an IBM fellow, noted that many of the architectures he was assembling for his

Architecture handbook had short “half-lives,” say three to five years [Booch 068]. We may have that rapid
architectural aging because the architectures were poorly designed, but we may also be seeing the effects of
the changing operational requirements.

The operational system is also changing independent of development activities. Hardware and operating
system upgrades are continuous as older versions fall beyond vendor support. Vulnerability monitoring
and incident mitigation will introduce changes to infrastructure configurations and components such as fire
walls and routers. The changing operational environment is a motivator for developing systems and software
that is increasingly environment independent, further limiting the applicability of current accreditation,
certification, and vulnerability analysis techniques.

Development - Architecture
The multitude of factors is a source of complexity for development. Booch made the following comment on

March 22, 2005, in his web log [Booch 059]:

Most enterprise systems are architecturally very simple yet quite complex in manifestation: simple
because most of the relevant architectural patterns have been refined over decades of use in many
tens of thousands of systems and then codified in middleware; complex because of the plethora of

5. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_smith05 (System
Strategies References)

6. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_kantor05 (System
Strategies References)

7. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_russell05 (System
Strategies References)

8. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_booch06 (System
Strategies References)

9. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_booch05 (System
Strategies References)

http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_smith05
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_kantor05
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_russell05
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_booch06
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_booch05

Introduction to System Strategies 5
ID: 883-BSI | Version: 9 | Date: 5/16/08 2:39:02 PM

details regarding vocabulary, rules, and non-functional requirements such as performance and security.
Systems of other genres (such as artificial intelligence) are often far more complex architecturally.

Complexity arises from the interaction of the non-functional requirements such as maintainability,
performance, and security. For example, consider the effects of regulations and distributed systems on the
functional architecture that supports access to employee information in a human resources database. The
functional architecture is a relatively simple query and display. The use of access rules to support an internal
corporate policy is straightforward. When such employee information moves among internal corporate
systems or is exported to other organizations such as an insurance provider, the access and usage policy
that was straightforward to implement in a single application must now be maintained across multiple
applications and organizations.

Exporting data may raise regulatory issues such as those for the privacy of health care information, and we
need to export the access policy that must be enforced. Data crossing international boundaries may be subject
to additional regulatory constraints. For example, European Union privacy controls require individuals to
allow their information to be shared (opt-in), whereas most U.S. organizations require individuals to decline
sharing (opt-out).

Designs that provide greater flexibility are increasingly complex operationally. A legacy system might have
used a static access policy and implemented that policy in application coding. On the other hand, reuse of
a component in multiple contexts with differing access policies might lead to an implementation where the
data provides a link to the policy represented in a manner that can be interpreted by the component. A simple
binding of access decisions at compile time for the legacy system has been replaced by a more complex
dynamic binding of the access policy at runtime. This dynamic solution provides broad flexibility. However,
problem identification and correction can be extremely difficult unless capabilities to track and monitor the
late binding decisions were part of the implemented solution.

There can be significant differences in how the system quality attributes are addressed. The analysis for
hardware reliability may be based on well-established failure rates. We may be able to model user behavior
with respect to various work processes to generate authentication and authorization requirements, but
security also has to model an active agent, i.e. the attacker. Attackers do not have to respect a model.

A buffer-overflow exploit is a good example of the complexity of the security analysis in terms of the
interaction of models. The attacker exploits a fault in a functional component. When that attack overwrites
the call stack, the transitions between states are changed. Whereas the architect may have modeled the access
control and authentication mechanisms and demonstrated that they satisfy the authorization requirements,
the exploit enables the attacker to move outside of the implemented software controls and hence outside
the model. The validity of the authorization model is now dependent on a security analysis of the data flow
model. Social engineering exploits are also examples of external events that put a system in a state that may
not be accounted for by initial analysis.

Distributed Systems
The distributed aspects of a business transaction also affect how we manage the interaction among systems.
An asynchronous interface between systems may be used to avoid tying up computing resources waiting on
a response from a system. With an asynchronous interface, a business purchasing transaction might start with
a message from the purchaser to the supplier that describes the details of an order. An acknowledgement or a
shipping notice would be a message from the supplier to the purchaser. Each message updates the transaction
state maintained independently by both organizations. Conceptually, messages can be thought of as events,
and the application architecture that processes events thought of as an event-driven architecture.

An event-driven architecture changes how we do authorization and authentication compared to the
mechanisms that are used with a synchronous interface associated say with an interactive application. An
interactive application could obtain the authentication information for a user and enforce the authorization
policies whenever data is accessed. For 3-tier architectures (web client, server business logic, database
server) the authorization and authentication is frequently done in the middle tier. For an event driven
architecture, the system that processes a message cannot directly authenticate the submitter or verify that
the submitter is authorized by the purchasing organization to submit the order. The submitter does not

Introduction to System Strategies 6
ID: 883-BSI | Version: 9 | Date: 5/16/08 2:39:02 PM

necessarily have control over the access of that information on the supplier’s system and might want to
be able to verify that the order had been officially accepted by the supplier. If we are using web service
protocols, we could incorporate some of the authentication and processing rules in the message. The message
not only contains the data but also provide controls over access. Encryption might be used by the sender
to restrict access to the information. Signing could be used to identify the authorizing agent of an order.
The message can contain information that describes how that authentication was done, which could be used
by the supplier as one criterion for accepting a transaction or as a mechanism that inhibits the purchaser
from trying to deny that the order was authorized. This design approach is based on the assumption that
operational infrastructure for all participants in the business process supports the needed encryption
capabilities and that signatures are effectively established and maintained in such a way that they can be
validated at each step of the process.

As we factor the business context onto distributed systems, we may move into uncharted territory such
as dealing with the privacy of personnel information as data is shared among multiple systems and
organizations. Host-based authorization and authentication have evolved into identify management, as
we use standards such as the Security Assertion Markup Language (SAML) to share user identifiers and
attributes across systems with independently managed security policies. The collection of security protocols
for web services would add another level of architectural complexity.

Adaptability and Reuse
IT applications are often large monolithic structures, “one-off” designs that meet specific sets of
requirements. The size and one-off nature of such systems can lead to higher costs, longer development
times, and difficulties in modifying such systems to reflect changes in business processes. There is a strong
motivation to consider a simple and easily tailored computer-supported service for multiple business
processes in order to lower maintenance costs as the business processes evolve. The adjective agile is
frequently applied, and the “IT bottleneck” is a popular target for complaints.

The objective to have software assembly correspond to mechanical assembly goes back to the beginnings of
software engineering. Doug McIlroy, at the 1968 NATO Conference on Software Engineering, expressed
that sentiment in a talk on “‘Mass Produced Software Components”:

Software components (routines), to be widely applicable to different machines and users, should
be available in families arranged according to precision, robustness, generality and timespace
performance. Existing sources of components—manufacturers, software houses, users’ groups and
algorithm collections—lack the breadth of interest or coherence of purpose to assemble more than one
or two members of such families, yet software production in the large would be enormously helped
by the availability of spectra of high quality routines, quite as mechanical design is abetted by the

existence of families of structural shapes, screws or resistors [McIlroy 6810].

We are now in the midst of another attempt to support reuse and improve assembly and integration, this
time exploiting the advantages of service-oriented architecture (SOA) and web services. The web has
demonstrated the effectiveness of a loosely coupled architecture for improved interoperability across diverse
platforms. Web services can be used to implement an SOA. In an SOA, independent business services are
built that can be easily composed and possibly even automatically assembled into a system to support a work
process.

A skeptic might have noted the similarity of ideal rendition of SOA vision with the Lego-block analogy
for component assembly. Grady Booch, in a November 15, 2004, entry in his web log, raises some of the
concerns:

Service-oriented architectures (SOA) are on the mind of all such enterprises—and rightly so—
for services do offer a mechanism for transcending the multiplatform, multilingual, multisemantic
underpinnings of most enterprises, which typically have grown organically and opportunistically
over the years. That being said, I need to voice the dark side of SOA, the same things I've told

10. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_mcilroy68 (System
Strategies References)

http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_mcilroy68

Introduction to System Strategies 7
ID: 883-BSI | Version: 9 | Date: 5/16/08 2:39:02 PM

these and other customers. First, services are just a mechanism, a specific mechanism for allowing
communication across standard Web protocols. As such, the best service-oriented architectures
seem to come from good component-oriented architectures, meaning that the mere imposition of
services does not an architecture make. Second, services are a useful but insufficient mechanism for
interconnection among systems of systems. It's a gross simplification, but services are most applicable
to large grained/low frequency interactions, and one typically needs other mechanisms for fine-
grained/high frequency flows. It's also the case that many legacy—sorry, heritage—systems are not
already Web-centric, and thus using a services mechanism which assumes Web-centric transport
introduces an impedence mismatch. Third, simply defining services is only one part of establishing a
unified architecture: one also needs shared semantics of messages and behavioral patterns for common
synchronous and asynchronous messaging across services.

In short, SOA is just one part of establishing an enterprise architecture, and those organizations who
think that imposing an SOA alone will bring order out of chaos are sadly misguided. As I've said
many times before and will say again, solid software engineering practices never go out of style (crisp
abstractions, clear separation of concerns, balanced distribution of responsibilities) and while SOA

supports such practices, SOA is not a sufficient architectural practice [Booch 0511].

The remainder of this article considers how separation of concerns and distribution of responsibilities can
help manage complexity.

Managing Complexity
The articles in this content area focus on the complexity of system and organizational issues, but the
components that make up those systems are still critical. The observation of one financial organization is
that the resiliency of their systems in terms of threats, vulnerabilities, unexpected events, and change of
practice had to be built in from the ground up. Complexity management will be impossible if we do not
have predictable component behavior and if we have not incorporated the mechanisms to deal with the

unexpected. The Scale: System Development Challenges12 article discusses the security challenges that arise
as we increase the scale and scope of systems.

A range of analysis and mitigation approaches are under development to frame the complexity issues and aid
in defining consolidated views to provide insight into potential gaps. As their value and scope are clarified,
additional articles will be added to share successful mechanisms.

Start with the Challenging Problems
These articles identify more problems than solutions. The requirements are stretching the available

techniques. The article by Praxis on Correctness by Construction13 (CbyC) provides appropriate top-level
guidance for a slightly different context:

There is a natural tendency, when faced with a complex task, to start with the parts you understand
in the hope that the less obvious parts will become clearer with time. CbyC consciously reverses this.
Since risk and potential bugs hide in those areas that are complex and least-well understood those are
precisely the areas that should be tackled first. Another reason for tackling uncertainty early is that
freedom for maneuver tends to decrease as the project progresses; we don’t want to have to tackle
the hardest part of a problem at the point where we have the smallest range of design options open to
us. Of course, we could take the fashionable approach and refactor our design; however, designing,
building and incrementally validating a system only to change it because we failed to consider risky
areas early enough is hardly efficient and is manifestly not correctness by construction!

11. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_booch05 (System
Strategies References)

12. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/882-BSI.html (Scale: System Development
Challenges)

13. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/sdlc/613-BSI.html (Correctness by Construction)

http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_booch05
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/882-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/sdlc/613-BSI.html

Introduction to System Strategies 8
ID: 883-BSI | Version: 9 | Date: 5/16/08 2:39:02 PM

.

.

The High Level Design describes the architecture of the software. This is where we ensure that key
non-functional properties such as safety and security are addressed. It is also the point where we make
provision for unresolvable requirements uncertainties by selecting a design that is flexible in the areas
where change is probable. Rather unintuitively, CbyC’s response to requirements uncertainty is more
design not less!

Security practitioners have always complained that security is addressed too late. The increasing complexity
and number of interdependencies may make it very difficult if not impossible to reengineer security into an
established architecture.

Identify What Is Secure Enough
Evidence of the development challenges appear early in the software development life cycle. The
requirements are typically incomplete and fluid and may need to accommodate extensive variability because
of stakeholder conflicts that cannot be resolved. Tradeoff decisions must accommodate a range of variability
driven by distributed management, business change, and infrastructure change. The diversity of usage,
available software, operations, risks, and organizational risk tolerance leads to unique characteristics for each
organization. Each organization has to answer the question as to what is secure enough for their usage and
risks. The expanded scope and scale increase the risks for organizations that do not clearly articulate their
security needs in requirements and for development.

Regulations are often an organizational driver for security and an important parameter in deciding what
is secure enough. Regulations such as Sarbanes-Oxley have prompted organizations to implement tighter
governance polices for financial systems. The demands of HIPAA (Health Insurance Portability and
Accountability Act) compliance have motivated organizations to change the usage of data such as social
security numbers. Software provides both control and auditing capabilities.

Commercial web sites have raised new liabilities. In 2003, a SQL injection flaw discovered in the PETCO
commercial website exposed up to 500,000 credit cards to outside access. There was no evidence that the
vulnerability had been exploited, but a consequence of the flaw was increased operational and development
expenses for the next 20 years. An FTC investigation ensued on alleged deceptive trade practices, as
PETCO’s privacy statement included the phrase “At PETCO.com, protecting your information is our number
one priority, and your personal information is strictly shielded from unauthorized access.” PETCO agreed to
a 20-year settlement with the FTC in which PETCO is prohibited from misrepresenting the extent to which
it protects the security of customers’ personal information and must establish and maintain a comprehensive
information security program that is certified by an independent professional every two years for the 20-year
life of the order.

Balance Consolidation of Services, Separation of Concerns, and Delegation of
Responsibilities

Separation of Concerns
The ways that we addressed complexity in a small or relatively simple system may not be valid as we expand
the scope and scale. Separation of concerns and consolidation are two classic techniques for managing
complexity. A motivation for separation of concerns is to decompose the system into more manageable
and understandable parts to be able to encapsulate and manipulate the parts that correspond to a particular
concern. For example, classes in object-oriented development represent a separation based on data concerns,
and such a separation facilitates the relatively independent development of the functions. A software
architect would like to maintain separation of concerns for essential system qualities such as performance
and security so that components that significantly affect those qualities are encapsulated in such as way
that performance and security issues can be addressed relatively independently. Consolidation seeks
commonality. Can a software function or service be shared? Service-oriented architectures are one example

Introduction to System Strategies 9
ID: 883-BSI | Version: 9 | Date: 5/16/08 2:39:02 PM

of consolidation. However, the expanding scope and scale challenge how we have previously decomposed
systems or consolidated functions.

Delegation of Responsibilities
An essential security task is delegating the responsibility for meeting the requirements. Whereas separation
of concerns has been primarily a software development technique, an analysis of the delegation of
responsibilities includes software, hardware, users, and system management. For example, authentication
responsibilities are shared by users and the system in that a password or private key used for authentication
can be compromised by a careless user. The user responsibilities might be reduced by using a one-time
password mechanism or a biometric device such as finger-print scanner.

The delegation of responsibilities can purposely introduce redundancy to support a defense-in-depth strategy.
A simple form of defense in depth is to always check the validity of inputs to a component even though the
design calls for those checks to be made in advance of the call to the component. An objective for defense in
depth is to avoid a single control point that might be compromised by an attacker.

A poor delegation of responsibilities is often reflected by an “It’s not my job” response and inaction when
problems arise. We usually associate that response with operations staff, but it equally applies to those
involved with system development. The causal analysis for engineered systems usually concentrates on
component failures that are mitigated by prevention or redundancy. That focus does not account for (1)
social and organizational factors in accidents, (2) system accidents and software errors, (3) human error,

and (4) adaptation over time [Leveson 0514]. It is difficult to identify a single root cause for the 2003 power

blackout that is described in [US-Canada 0415]. A risk for security is that it is typically treated as a separate
concern, with responsibility assigned to different parts of the organization that often function independently,
and that isolation is even more problematic as the scope and scale of systems expand. The power blackout

article16 suggests some first steps to take to better manage failures.

Business integration requirements and the appearance of technologies such as web services to support that
integration of distributed systems can affect the delegation of responsibilities. It is now not unusual to find
that an organization’s development, operational, and business groups are tackling common problems with
little coordination or that some security problems have been ignored.

Consolidation
The multiplicity of systems and increasing number of possible error states arising from the interactions
can overwhelm the analysis. The risk is having too many point solutions that mitigate narrowly specified
events. Changes in usage could generate a significant reengineering effort. An argument can be made that we
frequently have too much separation among system qualities such as security, reliability, and maintainability.

This section poses observations on current practice by organizations that have to find ways to better manage
system complexity. Such practices are on the leading edge and certainly have not been proven.

As noted by the Burton Group in one of their client reports, a number of organizations are revisiting how
they treat availability. Is it a security requirement or a business requirement? Should those two perspectives
be consolidated? As a business requirement, availability supports business continuity, which is based on
the dependability of the computing infrastructure, service providers, the technology deployed, operations,
information processing and communications. Business continuity is primarily achieved with redundancy of
equipment, personnel, and computing locations. Security, reliability, and compliance are all part of business
continuity.

14. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_leveson05 (System
Strategies References)

15. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_us-canada04 (System
Strategies References)

16. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_us-canada04 (System
Strategies References)

http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_leveson05
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_us-canada04
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_us-canada04
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/881-BSI.html#dsy881-BSI_us-canada04

Introduction to System Strategies 10
ID: 883-BSI | Version: 9 | Date: 5/16/08 2:39:02 PM

With respect to business continuity, the integration of geographically distributed business units could be
implemented in ways that provide value in maintaining continuity of operations and assist in removing single
points of failure, be they facilities, people, or processes.

The design guidance for the enterprise architecture, for example, might be to

• disperse information technology processing so that there was no dependency on any one location

• disperse critical functions among multiple sites

• enable both near-site and far-site (possibly international) recovery

• enable a specific geographical region to operate independently

• design for flexibility

• delay bindings of features that are likely to change to enable last-minute customization. For
example, if a business function has to be moved to an international site, software changes may be
required for compatibility with that function’s operations.

• emphasize commonality to support flexibility

Aspects of such guidance could be applied to enterprise architectures that are not geographically distributed.
A tactic for supporting business continuity for a system of systems would be to maintain sufficient
independence among the systems so that essential aspects of business processing can be restored with a
subset of the systems rather than the full system of systems or that processing can continue asynchronously
with an eventual synchronization. In this respect, various non-functional aspects such as adaptability can
provide synergy in support of security based on how they are instantiated.

Integrate Operational and System Risk Analysis
An integrated risk assessment should identify the security risks that arise from a poor coordination of
responsibilities between development and operations or among organization units. Organizations must
recognize that each development effort drives change into the current operational environment that can
create gaps with current operational policies and practices. By taking a proactive approach to identifying and
evaluating the potential operational risk at critical points throughout the software development life cycle,
an organization can have visibility into gaps and issues before crises occur. An approach to considering
operational security from within the development life cycle prior to actual deployment is described in

Considering Operational Security Risk During System Development17. The application of this approach
iteratively at appropriate milestones such as requirements review, design review, integration validation, and
stakeholder acceptance can provide opportunities to identify and adjust development decisions and issues
with operational policies and practices to mitigate unacceptable risk.

Conclusion
The expanding scale of business usage of information technology increases the importance of security
analysis, considering the people and organizational issues in addition to the technology. The classic design
techniques that have been used to manage complexity often need to be refined to reflect the complex

operational environment. The article Scale: System Development Challenges18 provides a more detailed
discussion of some of technical issues raised in this introduction.

Carnegie Mellon Copyright
Copyright © Carnegie Mellon University 2005-2010.

17. http://buildsecurityin.us-cert.gov/bsi/resources/articles/880-BSI.html (Considering Operational Security Risk During System
Development)

18. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/882-BSI.html (Scale: System Development
Challenges)

http://buildsecurityin.us-cert.gov/bsi/resources/articles/880-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/system-strategies/882-BSI.html

Introduction to System Strategies 11
ID: 883-BSI | Version: 9 | Date: 5/16/08 2:39:02 PM

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests

for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

1. mailto:permission@sei.cmu.edu

mailto:permission@sei.cmu.edu

